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Abstract—Sensors, smart meters and IoT devices are key parts
of the Building Information Systems. The amount of data gener-
ated from these sources is vast and the need for storage, fusion
with secondary datasets (such as weather data) and aggregations
has arisen in order to enhance building automation control activi-
ties. These data are stored on various data-sources, relational and
non-relational, using different data formats. The combination of
data coming from multiple data-sources constitutes a hard task,
since each database uses different query language and structure.
However, by combining all the available data-sources, it would
be beneficial to reduce the volume of data during the training
process. This paper presents an architecture that combines data
from multiple data-sources (Databases, Object Storages, Building
Information Systems) and create pipelines for aggregating the
overall data.

Index Terms—Data , Big Data, Query Engine, Data Processing,
Energy Sector, Metadata

I. INTRODUCTION

Nowadays, massive amount of data are generated during
buildings’ life-cycle. Building and energy information models
have installed in their spaces: sensors, arduinos!, Heating-
Ventilation-Air Conditioning (HVAC) systems for receiving
data related to their consumption, solar production, C'Os
emissions [1], [2]. Traditional systems receive this type of data
and store them to relational databases without harmonizing,
pre-processing and polishing them. This may result in the loss
of meaningful information that potentially could be leveraged
for improving building’s energy consumption, COs emissions
reduction. The Key Performance Indicators (KPIs) calculation
from data originated from Building Information Systems are of
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utter importance for controlling energy demands of buildings
such as cooling or heating demand by proposing actions that
could improve the building functionalities [3]. By combining
Big Data State-of-the-Art solutions, it is possible to solve real-
life problems surrounding buildings [4], [5]. Therefore, it is of
crucial importance to understand the building data needs for
creating smart systems that can handle and manage massive
amounts of data loads and proceed to the next generation of
building information solutions.

This work describes a Processing framework implemented
in MATRYCS Ecosystem 2 which is connected through JSON
[6] and AVRO? data schemas to Building information systems
and receives data related to their consumption, CO- emissions,
heating and cooling demand, building cadastrial information
and other building metadata. All these different types are
stored to a non-relational data storage for later processing.

This research contributes to the creation of a full enriched
warehouse that collects data from Building Information Sys-
tems. Through JSON & AVRO connectors the raw building
information is stored to MongoDB collections [7] and on top
of them a query engine is responsible for connecting the raw
building data and secondary information, which is pipelined in
the system through the Staging Area. The output component
of this work is the Data Feed Module, which utilises external
connections (data temporarily stored in the Staging area)
with raw building information, to apply transformations, such
as duplicate removal, missing values management, outlier
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detection. Furthermore, the calculation of pre-analytics will
be conducted from Data Feed module in order to support the
training of machine learning models over the enriched data.
The intelligent querying mechanisms of the component will
assure the creation of aggregation pipelines in order to reduce
the computational load of calculations.

The rest of the paper is structured as follows: Section
IT analyses the architecture and implementation of the Data
Feed module. Section III demonstrates a wide number of the
functionalities of the Data Feed Module. Finally, Section IV
presents the conclusions and the next steps.

II. ARCHITECTURE AND IMPLEMENTATION

In the Energy Sector, the adaption of sensors and IoT
technologies has led to the unprecedented availability of Big
Data [8]. The exploitation and storage of these data depends on
the desired outcome of the service or application. For instance,
a service may need near real-time monitoring of the energy
consumption in a building, which means that the consumption
data must be stored in a database that provides extremely
high throughput data access. Another characteristic example
would be a service that may need queries involving only few
columns of the data with low latency, which can lead to the
selection of a columnar database. The selection of one type of
database is no longer possible to handle all the various services
and applications. Therefore, taking the different needs of each
service into account, the solution that is opted for in most
cases is for the data to be stored in multiple databases.

The co-existence of multiple databases leads to complex
and complicated data warehouses. In this way, the fetching
of the data becomes a hard task, since the standard and
the query structure differ among the databases. This paper
proposes an architecture that deals exactly with this problem
providing the capability of executing efficient queries to the
databases as well as performing transformations and pre-
processing techniques over the data.

The figure below depicts an overview of the proposed
architecture, which consists of:

o Building Information Systems Connectors: Connectors

used for receiving building data

o Staging Area: Object-Storage used for storing secondary

data-sources, such as weather files, cadastrial data, etc.

o MongoDB Instance: Non-relational data storage used for

hosting raw building information

o Query Engine: Presto* Instance used for Querying con-

nected sources

« Data Feed Module: This module is leveraged for exposing

data to MATRYCS upper layers. Its sub-modules, Query
Builder and Data Pre-processing module, enable the fine-
tuning, according to user input, of the granularity levels
of processing and aggregations.

A. MATRYCS PROCESSING Data Storage Components

The MATRYCS Processing Data Storage System consists of
a MongoDB Instance and more specifically for each different
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Fig. 1. High-level overview of the architecture

data schema a different collection was used. For this paper, we
have utilised MongoDB, as main data storage, but initially, we
had included CassandraDB to the Storage Layer. Both of them
are non-relational databases, but the current solution supports
only the MongoDB, because the implementation-integration
with CassandraDB presented pitfalls and drawbacks due to the
data format generated by the Building Information Systems.

To begin with, MongoDB and CassandraDB [9] are popular
databases that are used widely for the storage of data in
the Energy Sector. These databases are characterised by the
following features [10]:

o High-performance

o Scalability

o Schema-less NoSQL database
o Free and easy to be installed
o columnar / document oriented

During the first implementation phase of the Data Feed
Module and Aggregation Pipelines in MATRYCS Project,
the CassandraDB was utilised. However, due to the various
formats of data presented in MATRYCS large scale pilots,
the transition to a document database was an urgent need.
This transition can be justified by the fact that the document-
oriented databases support various data storage requirements
without taking the schema of the data into consideration. The
technical evaluation of storage requirements led us to the
migration from CassandaDB to MongoDB.



B. Migration from CassandraDB to MongoDB

During the MATRYCS-PROCESSING technology evalua-
tion activities for the 1st technology release of MATRYCS
Ecosystem, it was observed that columnar databases and in
particular CassandraDB due to their nature cannot support
nested data formats and updates on stored data, as Cas-
sandraDB is a schema-depended database. For that reason,
databases that are schema-less and support the storage of
nested object were investigated. The outcome of that procedure
was that the MongoDB database is the ideal solution for
keeping transformed and prepared data for Machine Learn-
ing/Deep Learning (ML/DL) training. Thus, MongoDB was
selected instead of CassandraDB because it is flexible for
document schemas, easily scalable and optimised for querying
and analytics. Furthermore, MongoDB is the main data storage
used in various FIWARE 3 components, that would possibly
be integrated with MATRYCS Framework future releases.

Currently, all the components (Visualization Engine, Model
Development Module, Serving & Evaluation Framework) that
communicate with Data Feed Module receive data from MA-
TRYCS MongoDB instance.

Data Migration was the main challenge to deal with, as
it was necessary to transfer the existing data from Cas-
sandraDB to MongoDB, which was accomplished by using
a series of Python scripts for receiving all the data from
CassandraDB tables and then batch insert them to MongoDB.
After data migration, the new version of the Data Feed has
integrated Python functions for ensuring the connectivity and
data exchange between MongoDB and the Data Feed REST
(Representational state transfer) services.

C. Query Engine

The Building & Energy Management Systems expose time-
series data from sensors that measure (e.g temperature, hu-
midity, produced energy) and there is the need to manage
this type of data [11]. Nowadays, enriched warehouses are
multi-database systems that handle metadata databases and
time-series databases. The emerging need is the management
and querying of both data stores (real-time and metadata
databases) and combine this stored information. A system that
is database agnostic is needed in order to hide each database
query language and let the end user to be capable to write
SQL queries.

The current trend is the metadata of buildings’ life-cycle as
reported here [12]. Data querying solutions for building energy
data are focused only on metadata querying and insights
extraction. The proposed querying architecture in this research
leverages a graph database that receives batch data in JSON
format and then transforms them in graph entities. Furthermore
the graph database persists ontologies and RDF schemas to
enhance the stored metadata. By leveraging stored metadata
patterns and relationships a REST API on top of the graph
database receives JSON input and returns results from stored
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metadata. The main drawback of this data querying architec-
ture is that it only takes building metadata into consideration.

In general, the goal of the cloud pipeline, in terms of
storage, is to build an enriched data warehouse where raw
building energy data are collected and queried via intelligent
procedures, periodic tasks with an agnostic database manner.
Furthermore, this data warehouse will provide the possibility
to join external datasets with the stored information. For the
implementation of the database agnostic data warehouse, the
functionalities of the PRESTO query engine were leveraged.
A data warehouse can be characterised as database agnostic,
when it is able to query different databases, relational and non-
relational, by using SQL queries. PRESTO is a distributed
SQL query engine that provides interactive workloads by
querying many different data-sources. In this case PRESTO
is installed and configured on top of the MongoDB, enabling
with this way the big data querying and analysis of the
harmonised building data over a memory based architecture
and without moving the aforementioned datasets to another
structured system.

D. Data Cubes Implementation in Data Feed Module

Data Cubes are grouped data in a multidimensional matrix
[13]. In Data warehouses, there is a large number of multi-
dimensional data models, since the data are represented by
multiple dimensions and multiple attributes. These multi-
dimensional data are presented in the data cube as the cube
represents a high-dimensional space [14]. The figure below
demonstrates an example of Data Cubes.
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Fig. 2. Example of Data Cubes.

The Data Cubes are constructed thanks to the data com-
bination from the Data Feed Module. In particular, the Data
Feed Module joins data coming from the Staging Area and
the MongoDB. This staging area has been implemented using
a distributed file storage. The join between two different data-
sources is achieved by leveraging the functionalities of the
Query Engine, which utilises the different connection names
of Presto. In that way, the join of two datasets coming from
different datasources is feasible thanks to Query Engine.

The Figure 3 depicts the implementation of Data Cubes
in the MATRYCS Data Feed module by leveraging the MA-
TRYCS Query Engine, which is the mediator component



between the building information sources and the Data Feed
Module. The Data Feed Module receives the data either
from MongoDB collections or either MATRYCS Staging Area
/ Object Storage. Below the sub-component of Data Feed
Module leverages the functionalities of Presto to join building
data from MongoDB and Object storage. After the query
calculation, the aggregation action is performed in order to
expose aggregated data to MATRYCS upper layers. Finally,
the Data Feed Module’s REST API collection distributes the
result data cube to MATRYCS Analytics applications. These
data are also aggregated and prepared for Machine Learning
training.

Fig. 3. Data Cubes implementation in Data Feed Module

E. Data Feed Module Architecture
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Fig. 4. Architecture of the Data Feed Module.

The Data Feed Module is the component responsible for
data transferring between MongoDb Instance and Machine
Learning Training Procedures. More specifically, it consists of
two sub-components: The Data Importer and the Data Handler.
The architecture of the Data Feed Module is presented in the
Figure 4.

The Data Importer is a data pipeline system that receives
data from MATRYCS distributed storage. When the data are

on boarded to the Data Importer, a series of basic data prepa-
ration steps are conducted over them, such as the preparation
of the data to be inserted on the MATRYCS MongoDB
and the deletion of duplicate and null values. The Apache
Airflow has been selected for being the basis of data pipelines
management on Data Feed Module. It contains the following
core components:

o Web Server: This is the Ul of Airflow that can be used to
get an overview of the overall health of different Directed
Acyclic Graphs (DAG) and also in visualizing different
states of each DAG .

e Scheduler: This is the most important part of Apache
Airflow, as it orchestrates various DAGs taking care of
their interdependencies.

o Executor: Executors are the components that actually
execute tasks. The type of Executor used in production
is the CeleryExecutor, based on Celery framework, for
scaling the execution of tasks/DAGs across computational
resources.

e Meta-data database: This database stores metadata about
DAGs and Apache Airflow configuration details.

The data are inserted to MATRYCS-PROCESSING through
Data Importer subcomponent and stored to MongoDB.

The Data Handler is the REST service responsible for dis-
tributing these stored data across MATRYCS-PROCESSING
components. This module leverages Python [15] libraries
such as Presto Python Client, Pandas Framework [16] for
DataFrames and FastAPI © for REST services. One core func-
tionality of the Data Handler is the building of the SQL queries
(Query Builder). These REST APIs are used for enabling data
selection, data aggregation, data grouping, dates handling, nu-
merical scaling, categorical encoding (one-hot encoding, label
encoding) and converting time series to supervised procedures.
The Data Handler is connected with MATRYCS Query Engine
(Presto), and all queries are transformed into SQL queries and
all the MongoDB collections are transformed into tables in
Presto.

The Data Importer waits for incoming data on MATRYCS
Storage Staging Area. The Staging Area is a distributed file
storage where data are placed after the execution procedures
of Building Information System. The preparation pipelines are
scripts developed in Python 3.7 which have been integrated
on Airflow 7 framework, and apply transformation steps.
For example dropping duplicates, removing null values, and
normalising dates. These actions are scheduled and executed
from Apache Airflow workers, and they are executed when
new data are detected. At the end, the transformed data are
inserted to MATRYCS Storage for later use.

The Data Handler is the collection of REST services
responsible for distributing the data across MATRYCS-
PROCESSING. These services receive JSON payloads which
are processed from Query pre-processing class of the Data
Handler for constructing the Presto-SQL query. These queries

Ohttps://fastapi.tiangolo.com/
7https://airflow.apache.org/



are sent to MATRYCS Storage for getting the results back as a
response. Furthermore, these APIs are used for data selection,
data aggregation, data grouping, timeseries transformation and
could be the input for multiple MATRYCS components such
as Visualization Engine, Serving framework, etc.

III. DEMONSTRATION

The Data Feed Module is the component responsible for
transferring the stored prepared information from MongoDB
and creates cubes of data in order to be used from MATRYCS
Analytics layers and applications. The implementation of
these structures combines information derived from Building
information systems and performs aggregations that enhance
the quality of predictions that will improve the building life-
cycle .

Aggregations that are applied are min-max scaling, categor-
ical encoding, table joins, grouping of tables and selections
over stored data. The following tables contain some informa-
tion that demonstrate Data Feed Module capabilities. Query
Engine is the component responsible for the combination and
convergence of stored MongoDB collections and raw building
data stored in MATRYCS object and file storages. Presto pro-
vides capabilities, through its catalogues of registered storages,
can apply aggregations over different data sources that contain
building functional information.

To be more specific, the following tables contain various
API calls, that are sent to the Data Feed Module, which
constructs SQL queries, using the Query Builder. As next step,
the Data Feed Module communicates with the Query Engine,
which retrieves the data from the various data sources and
make them available. In that point, the constructed SQL query
is executed and the Data Feed Module returns the desired
outcome. For the needs of the demonstration of our work the
datasets coming from a large scale MATRYCS Pilot will be
used. These datasets contain energy data (energy consumption,
demand etc.) as well as information about events.

In the table below, the following query is used for receiving
records with “timestamp” and “value” (energy consumption)
fields from 01-12-2020 to 02-12-2020.

TABLE I
DEMONSTRATION OF DATA FEED MODULE (SELECT)

TABLE 11
DEMONSTRATION OF DATA FEED MODULE (AGGREGATIONS)

Description
Apply aggregation
functions to a dataset

Functionality
POST /complex/select/query HTTP/1.1

Host: hostname:8000
Content-Type: application/json

“table”: “pilot”,
“aggregation_metrics_list”: ["MAX”,”AVG”],

“aggregation_columns_list™: [’value”,
“value”],
“aggregation_metrics_alias_list™:

»

[’max_value”,

}

avg_value”]

The Table III presents a group by query, which returns the
average value of the “value” grouped by year in descending
order.

TABLE III
DEMONSTRATION OF DATA FEED MODULE (GROUP BY)

Description
Group data by column

Functionality

POST /complex/group/query HTTP/1.1
Host: hostname:8000

Content-Type: application/json

“table”: “pilot”,
”grouping_columns”: ["year”],
“aggregation_metric_alias™:
“avg_year_value”,
“aggregation_metric”: "AVG”,

“aggregation_column”: "value”,
“order_by_column”: “’year”,
“order”: "DESC”

The table IV presents a query that joins two tables, “pilot”
and “pilot_calendar”, and filters the data in order to return the
records that refer only to the first eight months of the year.

TABLE IV
DEMONSTRATION OF DATA FEED MODULE (JOIN)

Description Functionality

Description
Select data from a
dataset

Functionality
POST /complex/select/query HTTP/1.1

Host: hostname:8000
Content-Type: application/json

“table”: “pilot”,

“columns™: [ “timestamp”, “value”],
“where_column”: “timestamp”,
“between_values”: [72020-12-017, ”2020-12-
02”]

i

The Table II presents a query that includes aggregation func-
tions (MAX, AVG) about the ”value: (energy consumption) of
the MATRYCS pilot.

Join two tables POST /complex/join/query HTTP/1.1
Host: hostname:8000
Content-Type: application/json

3 9

“join_tables”: [“pilot”, "pilot_calendar”]

“columns_tablel”: [“value”, “timestamp”,
”month”],

”columns_table2”: [“event”],

“join_types”: [’type”: “INNER”, “tablel”:

2

“pilot”, “columnl”: “month”, “table2”: ’pi-
lot_calendar”,’column2”’: ”month”],
“where_symbol”: ”j”,

”where_column”: “month”,

“where_table”: pilot”,

”where_clause_term”: 79"

i




IV. DISCUSSION AND FUTURE WORK

This paper presented the Implementation of an architecture
for building aggregation pipelines. Using the capabilities and
functionalities of Presto, the system is able to process, apply
aggregations and pipeline transformations on building data and
metadata. In this way, all the components are able to receive
enriched data that can lead to insightful outcomes and predic-
tions, which may mitigate or even solve real-life problems of
the buildings (energy consumption, CO2 emissions etc.).

As future work, the presented work will be integrated in
the MATRYCS Ecosystem and it will be extended in order to
receive as additional input streaming data. These data may be
energy consumption, temperature, etc, that are measured by
sensors. This extension will facilitate the solution of near-real
time problems.
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