
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A Reasoning Engine Architecture for Building 

Energy Metadata Management 

Panagiotis Kapsalis 
Decision Support Systems 

Laboratory, School of Electrical 
and Computer Engineering 

National Technical University of 
Athens 

Athens, Greece 
pkapsalis@epu.ntua.gr  

 

Giorgos Kormpakis 
Decision Support Systems 

Laboratory, School of Electrical 
and Computer Engineering 

National Technical University of 
Athens 

Athens, Greece 
gkorbakis@epu.ntua.gr  

 

Konstantinos Alexakis 
Decision Support Systems 

Laboratory, School of Electrical 
and Computer Engineering 

National Technical University of 
Athens 

Athens, Greece 
kalexakis@epu.ntua.gr  

 

Evangelos Karakolis 
Decision Support Systems 

Laboratory, School of Electrical 
and Computer Engineering 

National Technical University of 
Athens 

Athens, Greece 
vkarakolis@epu.ntua.gr 

 

 

 

 

Spiros Mouzakitis 
Decision Support Systems 

Laboratory, School of Electrical 
and Computer Engineering 

National Technical University of 
Athens 

Athens, Greece 
smouzakitis@epu.ntua.gr  

Dimitris Askounis 
Decision Support Systems 

Laboratory, School of Electrical 
and Computer Engineering 

National Technical University of 
Athens 

Athens, Greece 
askous@epu.ntua.gr 

 
 

 
 
 

 

Abstract — During the Buildings’ lifecycle, massive amounts of 

data, that contain information related to their energy 

consumption, are generated. Towards the creation of smart 

building networks, this produced information must be intercepted 

and harmonized according to building ontologies and schemas. 

The pattern recognition from building metadata is based on 

inferencing and intelligent querying, that can be achieved with the 

utilization of graph and property databases that deploy and host 

building information. This paper presents a Reasoning Engine 

Architecture implemented in the context of the H2020 project 

called MATRYCS that persists building semantic information. It 

will be leveraged to support real life applications by improving the 

inference operations. 

Keywords — Inference analytics, building metadata 

management, semantic enrichment, reasoning engine, energy 

efficiency, intelligent querying, graph knowledge database  

I. INTRODUCTION 

The environmental crisis (climate change, energy supply) is 

the main problem that European Union (EU) is called to solve. 

Almost 40% of EU energy consumption is produced from 
buildings [1] across different member states, thus the building 

sector plays a solid role in the creation of effective climate and 

environmental policies[2]. The constantly generated metadata 

from the building lifecycle [3] offer a huge opportunity for 

improving the energy efficiency in the building sector by 

leveraging the logical connections between them. All the 

above-mentioned factors have led to an increasing momentum 

of technologies that could be utilized for managing the energy 

data generation [4] and consumption results [5], which can push 

towards the creation of smart and energy–aware building 

networks [6]. Data are expected to play an important role and 
various data analysis techniques [7] (including, among others, 

optimization, forecasting, classification, metadata analysis and 

management and clustering) can be applied for the extraction 

of meaningful information from building data and for making 

data-driven decisions that effectively support environmental 

policies. 

Despite the number of existing solutions for the 

management of building data [8], there is not a standardizable, 

interoperable and modular architecture that is able to combine 

metadata belonging to different buildings. The lack of a 
semantic framework for buildings data interoperability is 

severe, as the need for semantic management of buildings 

technical measurements, exogenous context-based data (such 

as weather conditions), geographical or energy networks 

(district, heating, power networks) related data pushes towards 

the direction of an approach to supports multi-sector integrated 

buildings-centered analytics. 

This work is mainly focused on the building metadata 

management. More specifically, a Reasoning Engine 

architecture that will be leveraged to extract and infer logical 

consequences from a set of asserted facts or axioms is proposed. 

The utility of a mechanism like this, is to provide richer sets of 
information to work with, by enabling RDF information [9], 

graph databases [10] and building standards as well as 

ontologies such as the BRICK schema [11] in order to 

standardize the physical, virtual and logical assets that are 

included in building operations. The BRICK schema was 

developed on top of Project Haystack [12] and the SAREF 

Ontology[13] in order to support more assets and data models. 

The schema and standards that BRICK provides may represent 

information for HVAC, Lighting, Electrical, Sensor systems, 

Spatial information, Formal definitions, building operational 

and control relationships. 
Neo4j can store undirected, weighted graphs and hyper-

graphs, in contraction to RDF triple stores that only store and 



manage the RDF building information as records. Moreover, 

Neo4j graph database provides theNeosemantics plugin 

[14]that can be used for importing RDFs and its associated 

vocabularies and for performing inferencing, by using imported 

ontologies and schemas axioms. In this research, Neo4j and 
Neosemantics deploy the Brick schema for conducting 

inferences and intelligent querying over building information 

and metadata. 

The rest of the paper is structured as follows. Section II 

analyses the architecture and implementation of the Reasoning 

Engine for building metadata. Section III demonstrates the 

Reasoning Engine queries and capabilities. Finally, Section V 

summarizes the key issues arisen in this work 

II. ARCHITECTURE & IMPLEMENTATION 

The proposed Reasoning Engine Architecture for building 
data presented in this research [15] is mainly focused on the 
management of streaming messages that contain building 
information, rather than using ontologies and RDF schemas for 
building information Our architecture is focused on the 
management of connected and linked data (e.g., RDF triples) 
and building ontologies (e.g., BRICK) that can be leveraged in 
to homogenize the information, create logical inferences from 
building entities and extract hidden patterns that will facilitate 
beneficiary parties to perceive and comprehend their 
infrastructures’ needs towards improved energy efficiency. 

 A Reasoning Engine for linked data is proposed in order to 
handle building ontologies and triples, as well as extract 
information and entities from them by leveraging the 
functionalities of graph databases and object storages. The 
above-mentioned engine is consisted of components that are 
responsible for the management and the version control of the 
linked datasets, the storage of RDF triples, the processing and 
the homogenization of these data under BRICK ontology, their 
transformation to graph entities, and the intelligent querying 
over the stored graph information via REST APIs. The 
Reasoning Engine for building linked data is a microservices – 
oriented solution, meaning that all the components are 
independent and separately deployed from the others, but, of 
course, properly connected to each other in order to 
harmonically collaborate. This approach provides resilience, 
flexibility and scalability. Figure 1depicts its architecture. 

 
1 https://www.python.org/download/releases/3.0/ 
2 https://flask-restful.readthedocs.io/en/latest/ 

 

Figure 1: Proposed Architecture for building linked data 

As demonstrated, the Reasoning Engine is a multi-
component framework, consisted of four components, namely:  

• the RDF Pool: Object storage where Building RDF 
are stored and managed 

• the RDF processors: Component responsible for 
transforming RDF information to Neo4j entities 

• the Graph database: Neo4j graph database 

• the Retrieval Engine: Collection of REST APIs 
that receive JSON and, on the background, 
transform the JSON input to CYPHER for querying 
the stored building graph information. The result is 
also a JSON instance. 

A. RDF Pool 

The RDF Pool is the service responsible for receiving RDF 
triples and handling them before processing them [16]. It is a 
component implemented in Python 3 1  and it leverages the 
capabilities of Python libraries such as Flask REST Framework2, 
MinIO 3  driver and Neo4j 4  driver to create REST APIs for 
receiving RDFs, to persist and manage these datasets and to 
enable the Brick ontology. Figure 2 demonstrates the 
functionality of the RDF Pool and how the data are inserted in 
the Reasoning Engine framework in RDF format. 

3 https://min.io/ 
4 https://neo4j.com/ 



 

Figure 2: RDF file consumption 

More specifically, the RDF Pool component enables the 

Brick Schema during its initialization. This process is 

performed for harmonizing all the incoming RDF files and the 

consumed building information in one common data model. 

Following, the RDF files are stored into MinIO object storage. 

B. RDF Processor 

The next layer is the RDF to Neo4j Processor, which is the 

service responsible for transforming the processed RDF 

information to Neo4j entities. This processor acts as a 

middleware between the RDF Pool and the Neo4j Graph 

database. It receives RDF data from MinIO and transforms the 
RDF data to CYPHER5 commands to insert the information to 

Neo4j Graph database. Neosemantics6 toolkit is used for the 

deployment of the RDFs to the graph database. The pipeline of 

RDF deployment is demonstrated in Figure 3. 

 

 
Figure 3: RDF Deployment Pipeline to Neo4j 

C. Graph Database 

The selected graph database technology is Neo4j, which is 

a distributed database that translates its records to graph nodes 

and the relationships between records are intercepted as graph 

connections. The graph database is selected for persisting the 

RDF information because it is capable of conducting logical 

inferences over data relationships, extracting hidden patterns 

and creatin a network of building data aligned to BRICK 

Ontology. Figure 4 demonstrates the network of persisted 

buildings in Neo4j. These building data have been inserted 

through the Reasoning Engine components, from RDF Pool to 
Processor and afterwards to the Graph indexing. Neosemantics 

toolkit achieves the transformation of the RDF to graph entities. 

 
5 https://neo4j.com/developer/cypher/ 
6 https://neo4j.com/labs/neosemantics/ 

D. Retrieval Engine 

The last component which exposes the persisted entities to 

the external world is the Reasoning Engine’s Retrieval Engine. 

It is a collection of REST APIs based on Flask Rest Framework 

for the APIs generations and the routing functionality. The 

querying functionalities are derived from the usage of Python 

Neo4j driver and the Neosemantics toolkit which interacts with 

the stored network of building information. 

 
Figure 4: Network of Buildings aligned to BRICK Schema 

The Retrieval Engine is responsible for the transformation of 

JSON7 input received from the API collection. On the backend 

side the delivered information is translated to CYPHER queries 

that are finally sent to the Neo4j graph database. 

 
Figure 5: Retrieval Engine Interaction with the Neo4j Graph 

Database 

Figure 5 depicts the interaction of the Retrieval Engine and 

the incoming input from the external applications and users of 

MATRYCS ecosystem. The Retrieval Engine is consisted of 

two sub-components: the REST APIs that collect the external 

information and distribute it to the Query Processing 

mechanism, and the Query Processing mechanism itself, which 

 
7 https://www.json.org/json-en.html 



process and polishes the incoming events to CYPHER 

commands in order to query the existing network of buildings 

in the graph database. 

Table 1 demonstrates the input received from the APIs. 

 
Table 1: JSON input for receiving building KPIs 

POST /leif/rdf/multiple/kpi/buildings 

{ 

 "kpi_list": ["Action_value", "Renovation_cost"] 

       } 

 

This input is then transmitted to the Query processing, 

where  are utilized to covert JSON to CYPHER.  Table 2 depicts 
the CYPHER command generated from the input in Table 1. 

 
Table 2: CYPHER command generated from JSON input 

MATCH (b:Building)-[r:value]->(kpi) 

WHERE kpi.label[0] in ["Action_value", "Renovation_cost"] 

 RETURN b.uri as building_uri, kpi.label[0] as label, 
kpi.hasUnit[0] as hasUnit, kpi.value[0] as value 

 

The output of the Retrieval Engine is the result of query 

demonstrated in Table 2, which fetches the information of the 

stored buildings for the provided KPIs, and it is sent back in 

JSON format through HTTP8 response (Table 3). 
 

Table 3: Response returned from Retrieval Engine 

[ 

    { 

        "building_uri": "http://example.com/Leif#Incukalns_1", 

        "label": "Renovation_cost", 

        "hasUnit": "euro", 

        "value": 328899.5 

    }, 

    { 

        "building_uri": "http://example.com/Leif#Incukalns_2", 

        "label": "Action_value", 

        "hasUnit": "action_value", 

        "value": 3.01 

    }, 

….. 

 
8 https://developer.mozilla.org/en-US/docs/Web/HTTP 

] 

E. Methodology 

The design and the implementation of the proposed 

architecture was based on the results of the state-of-the-art 

analysis and research, as well as the undoubted need that arises 

for extracting information by leveraging rules and axioms from 

Building RDF information [17]. The next step was the 
identification of the BRICK ontology and of the Neosemantics 

toolkit which respectively are the technologies used for the 

homogenization of linked data and their graphical 

representation. Following, the technical phase was initiated 

with the exploration of available RDF building files and the 

creation of the Building graph. Finally, the materialization of 

the Reasoning Engine component using Python 3 

accomplished. 

 

 
Figure 6: Implementation Steps 

III. DEMONSTRATION 

The Reasoning Engine proposed in this paper is leveraged 

to apply logical inferences and axioms over energy building 

data. The knowledge base, where our architecture will be used 

to perform logical consequences, is part of the MATRYCS9 

H2020 large scale pilots. 

The data used for the testing of the proposed architecture 

were RDF triples containing information of buildings, such as 

building’s construction year, building’s total area, building’s 

coordinates, building’s KPIs before and after renovation, name 

of the project that funds the building’s renovation activities, etc. 
The insertion of RDF building data is conducted through the 

RDF Pool file uploading service. Before using this 

functionality, it is obligatory to define the RDF file that 

contains the building data that will be uploaded in the 

Reasoning Engine structures, the version number and the 

identifier of the file. This information are needed for 

characterizing the directory, where the input will be stored, in 

the RDF Pool object storage (MinIO bucket). Table 4 presents 

the uploading file functionality. 

 

9 https://matrycs.eu/ 



 
Table 4: RDF uploading service 

POST /upload/ttl/files HTTP/1.1 

Host: reasoning_engine 

Content-Length: 401 

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundary7MA4YWxkTrZu0gW 

----WebKitFormBoundary7MA4YWxkTrZu0gW 

Content-Disposition: form-data; name="file"; 

filename="/ /LEIF.ttl" 

Content-Type: <Content-Type header here> 

(data) 

----WebKitFormBoundary7MA4YWxkTrZu0gW 

Content-Disposition: form-data; name="version" 

2 

----WebKitFormBoundary7MA4YWxkTrZu0gW 

Content-Disposition: form-data; name="file_id" 

leif 

----WebKitFormBoundary7MA4YWxkTrZu0gW 

 

After the file uploading, the Processor sub-component 

begins to function. More specifically, the RDF triples are 

transformed to Neo4j entities (nodes and connections) by 
enabling the BRICK schema and Neosemantics toolkit. The 

RDF artifact is selected from the MinIO bucket and, as the 

process continues,it is polished and processed through the 

Processor cleansing procedures. Firstly, the homogenization 

process is triggered and the building properties in RDF triples 

are remodeled according to BRICK standards and attributes. 

Consequently, Neosemantics and its Python driver are enabled 

to convert the input data to Neo4j graph entities. 

 
Table 5: Trigger Processing for specific RDF file 

POST /enable/ttl HTTP/1.1 

Host: reasoning_engine 

{ 

   "ttl_id": "leif", 

   "ttl_version": 1, 

   "ttl_name": "LEIF.ttl", 

   "ontologies":[""http://qudt.org/vocab/unit/", 
"http://www.w3.org/2001/XMLSchema#"] } 

 

In Table 5 the REST API that triggers the procedures 

responsible to convert the file with name “LEIF.ttl” is 

demonstrated. As shown, this specific file has an identifier with 

the value “leif” and its version number is “1”. The resulting 

graph from the previous file is depicted in Figure 7. 

 

 

 
Figure 7: RDF Triples as Neo4j Entities 

The building information is stored as graph entities and the 

Retrieval Engine is responsible for exposing these data to 

analytics applications in order to enhance their accuracy. The 

intelligent querying is offered from the persisted BRICK 

schema which is utilized from the Neosemantics toolkit to 

manage the building attributes effectively and to provide 
insights and capabilities to analytics services for reducing the 

size and the volume of their input.  

Data produced from buildings are massive and their load is 

vast [18], building analytics services are responsible for 

handling that load for predicting and handling building KPIs 

and metrics [19], such as CO2 emissions, electricity 

consumption. The proposed Reasoning Engine manipulates 

these metadata as graph entities and provides mechanisms for 

translating them to inputs easy to be consumed from other 

services such as JSON and reducing their size via metadata and 

ontology management. The analytics services receive the 

pattern extraction from Reasoning Engine REST APIs as JSON 
data. The following table (Table 6) contains a series of APIs 

that trigger the pattern and insights extraction from building 

graph entities. 

 
Table 6: List of Reasoning Engine REST APIs 

Description Functionality 

List of stored 

buildings URI 

GET /leif/rdf/buildings HTTP/1.1 

Host: reasoning_engine:5000 

List Project Sites 
GET /leif/rdf/sites HTTP/1.1 

Host: reasoning_engine5000 



List of stored 

building data 

GET /leif/rdf/buildings/data HTTP/1.1 

Host: reasoning_engine:5000 

List stored 

building data for 

specific Project 

Site 

POST /leif/rdf/site/buildings/data HTTP/1.1 

Host: reasoning_engine:5000 

{ 

    "site_uri": 

"http://example.com/ProjectSite#KPFI_7_8" 

} 

Get Information 

for specific 

building 

POST /leif/rdf/building HTTP/1.1 

Host: reasoning_engine5000 

{ 

    "building_uri": 

"http://example.com/Leif#Riga_49" 

} 

Get KPIs for 

specific building 

POST /leif/rdf/building/totals HTTP/1.1 

Host: reasoning_engine:5000 

{ 

    "building_uri": 

"http://example.com/Leif#Riga_21" 

} 

Get Energy KPIs 

for specific 

Building 

GET /leif/rdf/energy/kpis HTTP/1.1 

Host: reasoning_engine:5000 

Get List of 

buildings along 

with their values 

for the provided 

list of KPIs 

POST /leif/rdf/multiple/kpi/buildings HTTP/1.1 

Host: reasoning_engine:5000 

{ 

 "kpi_list": ["Action_value", "Renovation_cost"] 

} 

Get Buildings that 

belong to the same 

cluster 

GET/leif/rdf/cluster/number/${cluster_number}/b

uildings HTTP/1.1 

Host: reasoning_engine:5000 

Get top N most 

similar buildings 

for the provided 

building URI 

POST /leif/rdf/list/similars HTTP/1.1 

Host: reasoning_engine:5000 

{ 

    "num": N, 

    "building_uri": 

"http://example.com/Leif#Riga_21" 

} 

Consume Building 

RDF via URL 

POST /import/rdf HTTP/1.1 

Host: reasoning_engine:5000 

{ 

 "onto_url": 

"https://brickschema.org/schema/Brick#", 

 "rdf_url": "${RDF_URL}” 

} 

Consume Building 

RDF stored in 

RDF Pool 

POST /enable/ttl HTTP/1.1 

Host: reasoning_engine:5000 

{ 

   "ttl_id": "leif", 

   "ttl_version": 1, 

   "ttl_name": "LEIF.ttl", 

   "ontologies": ["http://www.w3.org/1999/02/22-

rdf-syntax-ns#", "http://qudt.org/vocab/unit/", 

"http://www.w3.org/2001/XMLSchema#"] 

} 

 

IV. DISCUSSION 

The component demonstrated before is an engine for 

metadata management, where the information is organized with 

a specific schema. If new data arrive that do not follow the 

prescribed schema/ontology the reasoning will fail and will 
produce poor results. The data enrichment process it is based 

only on BRICK schema, thus the need for additional schemas 

will expand the reasoning capabilities of the component. 

Furthermore, the existence of a user interface that presents the 

resulted operation is required as the user will be helped to 

understand more the reasoning process than the resulted 

command line operations. 

V. CONLUSIONS 

This paper introduced a Reasoning Engine architecture for 

buildings that enables the usage of the BRICK schema along 
with property storages for pattern extraction from building 

metadata. A system implemented on top of the graph database 

in order to provide a RDF Pool, as the staging area for the 

building metadata. The stored metadata are transformed from 

triples to logical entities under the BRICK schema and then the 

search capabilities and querying are offered via HTTP methods. 

Potential insights derived from the building lifecycle could 

be used from decision makers to design policies based on data 

driven applications that will aid to solve complex problems that 

European Union deals with, such as energy efficiency and 

energy poverty across member states. The building domain is a 

starting point for using innovative methods based on analytics 
results and conduct energy prediction, multi-criteria decision 

support and assessment. 

As future work, the Reasoning Engine for building metadata 

proposed in the context of MATRYCS H2020 project will be 

enriched with more RDF triples from other large-scale pilots 

involved in the project. Furthermore, in the near future our goal 

is to provide an admin console where the admin user will be 

capable to manage ontologies and schemas [20], for instance to 

add, delete and update RDF files and building ontologies to the 

MATRYCS Reasoning Engine. 

 

ACKNOWLEDGMENT 

This work has been co-funded from the European Union’s 

Horizon 2020 research and innovation programs under the 

MATRYCS project ‘Modular Big Data Applications for 

Holistic Energy Services in Buildings’, grant agreement No 

101000158, and the VesselAI project ‘ENABLING 

MARITIME DIGITALIZATION BY EXTREME-SCALE 

ANALYTICS, AI AND DIGITAL TWINS’, grant agreement 

No 957237. 

 

The authors would like to thank all the MATRYCS 

consortium partners and especially Daniele Antonucci 
(EURAC) and Aija Zučika (LEIF) for the fruitful discussions, 

remarks and observations during project meetings. 

REFERENCES 

 
[1] H. Doukas and A. Nikas, “Decision support models in climate 

policy,” European Journal of Operational Research, vol. 280, no. 1, 

pp. 1–24, Jan. 2020, doi: 10.1016/J.EJOR.2019.01.017. 

[2] V. Marinakis, H. Doukas, P. Xidonas, and C. Zopounidis, 

“Multicriteria decision support in local energy planning: An 

evaluation of alternative scenarios for the Sustainable Energy Action 

Plan,” Omega (Westport), vol. 69, pp. 1–16, Jun. 2017, doi: 

10.1016/J.OMEGA.2016.07.005. 

[3] V. Marinakis, A. G. Papadopoulou, G. Anastasopoulos, H. Doukas, 

and J. Psarras, “Advanced ICT platform for real-time monitoring and 

infrastructure efficiency at the city level,” in 2015 6th International 

Conference on Information, Intelligence, Systems and Applications 

(IISA), 2015, pp. 1–5. doi: 10.1109/IISA.2015.7387958. 



[4] Y. Wei et al., “A review of data-driven approaches for prediction and 

classification of building energy consumption,” Renewable and 

Sustainable Energy Reviews, vol. 82, pp. 1027–1047, Feb. 2018, doi: 

10.1016/J.RSER.2017.09.108. 

[5] K. Amasyali and N. M. El-Gohary, “A review of data-driven building 

energy consumption prediction studies,” Renewable and Sustainable 

Energy Reviews, vol. 81, pp. 1192–1205, Jan. 2018, doi: 

10.1016/J.RSER.2017.04.095. 

[6] N. Naji et al., “Actuator Networks Sensor and Energy-Aware 

Wireless Sensor Networks for Smart Buildings: A Review,” 2021, 

doi: 10.3390/jsan10040067. 

[7] V. Marinakis, H. Doukas, E. Spiliotis, and I. Papastamatiou, 

“Decision support for intelligent energy management in buildings 

using the thermal comfort model,” International Journal of 

Computational Intelligence Systems, vol. 10, no. 1, pp. 882–893, Jan. 

2017, doi: 10.2991/ijcis.2017.10.1.59. 

[8] M. Petychakis, O. Vasileiou, C. Georgis, S. Mouzakitis, and J. 

Psarras, “34-47 A State-of-the-Art Analysis of the Current Public 

Data Landscape from a Functional, Semantic and Technical 

Perspective Journal of Theoretical and Applied Electronic Commerce 

Research ISSN 0718-1876 Electronic Version,” vol. 9, pp. 34–47, 

2014, doi: 10.4067/S0718-18762014000200004. 

[9] O. Lassila, “Resource Description Framework (RDF) Model and 

Syntax Specification,” 1998. [Online]. Available: 

http://www.w3.org/1998/10/WD-rdf-syntax-19981008 

[10] R. Angles and C. Gutierrez, “Survey of graph database models,” 

ACM Computing Surveys, vol. 40, no. 1, Feb. 2008, doi: 

10.1145/1322432.1322433. 

[11] B. Balaji et al., “Brick: Towards a Unified Metadata Schema For 

Buildings”, doi: 10.1145/2993422.2993577. 

[12] V. Charpenay, S. Käbisch, D. Anicic, and H. Kosch, “An ontology 

design pattern for IoT device tagging systems,” in 2015 5th 

International Conference on the Internet of Things (IOT) , 2015, pp. 

138–145. doi: 10.1109/IOT.2015.7356558. 

[13] M. Poveda-Villalón and R. García-Castro, “Extending the SAREF 

ontology for building devices and topology.” [Online]. Available: 

http://www.businessinsider.com/there-will-be-34-billion-iot-

devices-installed- 

[14] E. J. V. F. Moreira and J. C. Ramalho, “SPARQ ling Neo4J,” in 

OpenAccess Series in Informatics, Sep. 2020, vol. 83. doi: 

10.4230/OASIcs.SLATE.2020.17. 

[15] P. Kapsalis, G. Kormpakis, K. Alexakis, and D. Askounis, 

“Leveraging Graph Analytics for Energy Efficiency Certificates,” 

2022, doi: 10.3390/en15041500. 

[16] S. Ramanujam, A. Gupta, L. Khan, S. Seida, and B. Thuraisingham, 

“R2D: Extracting Relational Structure from RDF Stores,” in 2009 

IEEE/WIC/ACM International Joint Conference on Web Intelligence 

and Intelligent Agent Technology, 2009, vol. 1, pp. 361–366. doi: 

10.1109/WI-IAT.2009.63. 

[17] V. Marinakis et al., “From big data to smart energy services: An 

application for intelligent energy management,” Future Generation 

Computer Systems, vol. 110, pp. 572–586, Sep. 2020, doi: 

10.1016/J.FUTURE.2018.04.062. 

[18] V. Marinakis, H. Doukas, K. Koasidis, and H. Albuflasa, “From 

Intelligent Energy Management to Value Economy through a Digital 

Energy Currency: Bahrain City Case Study”, doi: 

10.3390/s20051456. 

[19] G. N. Papadakos, V. Marinakis, C. Konstas, H. Doukas, and A. 

Papadopoulos, “Managing the Uncertainty of the U-value 

Measurement Using an Auxiliary Set along with a Thermal Camera,” 

Energy and Buildings, vol. 242, p. 110984, Mar. 2021, doi: 

10.1016/j.enbuild.2021.110984. 

[20] R. Calvo et al., “Ontology-Based Production Simulation with 

OntologySim,” 2022, doi: 10.3390/app12031608. 

  

 


