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Abstract.

Artificial Intelligence (AI) technologies are moving from customized deployments in

specific domains towards generic solutions horizontally permeating vertical domains and industries.
For instance, decisions on when to perform maintenance of roads or bridges or how to optimize
public lighting in view of costs and safety in smart cities are increasingly informed by AI models.
While various commercial solutions offer user friendly and easy to use AI as a Service (AlaaS),
functionality-wise enabling the democratization of such ecosystems, open-source equivalent ecosys-
tems are lagging behind. In this chapter, we discuss AlaaS functionality and corresponding tech-
nology stack and analyze possible realizations using open source user friendly technologies that are
suitable for on-premise set-ups of small and medium sized users allowing full control over the data
and technological platform without any third-party dependence or vendor lock-in.

1 Introduction

Artificial Intelligence (AI) technologies have been
mostly used by experts to create new services and
manage the extraction of value from large amount
of data enabling the rise of some technology giants.
However, recently they are moving from customized
deployments in specific domains towards more generic
solutions aiming for horizontally permeating various
vertical domains and industries [I]. For instance, de-
cisions on when to perform maintenance of roads or
bridges [2] or how to optimize public lighting [3] in
view of costs and safety in smart cities are increas-
ingly informed by AI models. However, to be success-
ful in increasing our overall productivity, the adoption
by non-experts in their day-to-day use is further sup-
ported by efforts to lower the entry barrier by democ-
ratizing AI [4] through the development of intuitive,
easy to set up, manage and use systems such as Al as
a Service (AlaaS).

Figure [I| presents a three layer abstraction of
the AlaaS technology stack consisting of physical
resources, infrastructure automation and machine
learning automation, while an alternative view of
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Figure 1: AlaaS technology stack.

a three layer abstraction focused less on infrastruc-
ture automation and more on AlaaS for different tar-
get groups is presented in [5]. Existing cloud ser-
vice providers initially developed computing and stor-
age functionalities such as Storage-, Infrastructure-
, Platform- as a Service that were able to abstract
physical resources and thus enabled an ecosystem for
accelerated application development and scale-up of
various companies [6]. Subsequently, they added ad-



ditional layers of abstraction and functionality leading
to the so-called XaaS that enable ever more advanced
application development and value creation [7].

Various commercial solutions already offer
user friendly and easy to use AlaaS solutions,
functionality-wise enabling the democratization of
such systems, but their business and technological
models rely on controlling parts of the AlaaS tech-
nology stack. While cloud providers mostly own
the physical resources and keep them off the users’
premises [7], recent commercial offerings are also
enabling on-premise infrastructure deployment of
so-called edge cloud computing [8] where the physical
resources may be on-premises while the infrastruc-
ture automation is managed by the provider. Fully
controlled on-premises AlaaS stack is challenging and
costly to deploy, and typically only available to large
companies that have sufficient resources to realize it.

In this chapter we discuss the infrastructure and
machine learning automation for AlaaS stacks such as
the one depicted in Figure[]] We discuss the function-
ality and corresponding technology stack for these two
layers and analyze possible realizations using open
source user friendly technologies that are suitable for
on-premise set-ups of small and medium sized users
allowing full control over the data and technological
platform without any third-party dependence or ven-
dor lock-in.

Section [2] focuses on infrastructure automation,
Section [3] focuses on machine learning automation
while Section [4] concludes the chapter.

2 Infrastructure Automation

Cloud computing is already used in many businesses
today [9] while many others are migrating to public
clouds (i.e., AWS, GCP and MA) to reduce opera-
tional and management costs [I0]. The advantage of
such solutions is the simplicity involved in managing
the underlying infrastructure where few clicks or few
line changes in configuration files reflect in produc-
tion as depicted on the left in Figure[2] Alternatively,
when public cloud solutions are discouraged for strate-
gic, political or financial reasons, operational costs
can also be reduced by adopting open source tools
such as OpenStack, Apache Mesos and Eucalyptus or
using these to replace proprietary infrastructure man-
agement tools where already in place. The aforemen-
tioned open source solutions are well suited for large-
scale environments such as data centres, but add un-
necessary complexity and overhead for most smaller
clusters [11].

For smaller, non-enterprise setups, such as hobby
projects, home labs, or small and micro enterprises,
it is hard to find a maintained solution that covers
day to day needs. For such needs, one approach is to
manually set up a cluster as depicted on the right side
in Figure [2l Manual installation requires many steps
to successfully set up a cluster. The first three steps
that need to be performed only once are related to
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Figure 2: Comparison of infrastructure deployment
steps on public cloud, semi-automated environments
and manual installation.

preparing the hosts by installing and configuring the
hypervisors and possibly some other required software
as marked with the grey background in Figure 2 In
public clouds, this step is not required, as the vir-
tualized layer is prepared in advance by the opera-
tor and later all users share the same infrastructure.
Next follows a series of steps, marked with red under
the Manual process on the right in Figure [2| where
each virtual machine must be manually created and
configured. This process is prone to human errors
and can take days or even weeks, depending on the
size of the cluster. In case the cluster needs to be
upgraded, each node must be manually reconfigured,
which takes almost as much time as setting up a new
cluster. These steps can be automated, resulting in a
so-called Semi-automated process as illustrated in the
middle in Figure 2]

Semi-automated solutions [12, [I3] differ from pub-
lic clouds in that the hosts still need to be preconfig-
ured, while the other steps are automated. In fact, the
host configuration process could also be automated
by the end user, however, due to large differences be-



tween the environments, existing and emerging solu-
tions assume manual configuration.

Infrastructure automation lifecycle in its most gen-
eral form has four independent phases: cluster cre-

ation, scaling, upgrading and destruction.

Creation phase

As depicted in Figure 3] cluster creation can be re-
alized through the following four steps: validation,

preparation, provisioning and deployment.
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Figure 3: Infrastructure automation workflow and

scheme of the resulting infrastructure.

Validation

The main objective of the validation step is to de-
tect any potential errors as soon as possible. Depend-
ing on the user input, which can be either a terminal
command or a set of configuration files, the actions
triggered by the input must be predicted and checked
whether they can cause potential inconveniences later
in the cluster creation process. The validation process
is critical to prevent unnecessary or potentially dan-
gerous changes to the system and to save the user’s
time. Validation of input is followed by validation of
system requirements. Based on user input, specific
system requirements are verified.

Preparation

The preparation step ensures that missing packages,
services, and dependencies are installed. However,
conditions that cannot be met during the preparation
step must abort the cluster deployment.

Infrastructure provisioning

After the successful validation and preparation step,
the infrastructure deployment step begins. In this
step, virtual components such as the virtual network,
virtual machines and storage pools are provisioned

according to the user’s input. On each virtual ma-
chine an operating system is deployed and configured
to make it accessible on the local network.

At the end of this step, the provisioned infrastruc-
ture consists of independent virtual components that
are not yet configured to be used as a cluster. There-
fore, an orchestrator needs to be deployed on top of
the provisioned infrastructure. The orchestrator sim-
plifies the management and coordination of applica-
tions and services running in the cluster by treating
the entire cluster as a single entity.

Platform deployment

Platform deployment step is responsible for the in-
stallation of orchestrator and platform components,
and connection of all nodes into the cluster. In this
step, all orchestrator components, such as scheduler,
server API, and other system controllers, are deployed
on each provisioned virtual machine. In addition to
traditional virtualization, containerization can also be
used. Containerization is a popular, lightweight form
of virtualization. It takes advantage of the host’s op-
erating system kernel to create isolated processes in
different system namespaces. Compared to virtual
machines, containers have low overhead because they
do not require a dedicated operating system, making
container creation, migration and deletion very effi-
cient. By combining containerization with traditional
virtualization, virtual machines provide a high level of
isolation, while containers reduce workload overhead
and facilitate cluster management. Containerization
requires a container runtime, which can be installed
and configured during this step. After successful clus-
ter installation, the cluster, as depicted in Figure [4
is ready for the deployment of custom workload.

In addition to the four general steps, infrastructure
automation may also include other optional steps.
For instance, the installation of certain applications
and services required on each deployed cluster, such
as monitoring, logging, and authentication services,
marked as Platform Support Applications in Figure[d]
can be performed as part of infrastructure automa-
tion. However, the deployment of custom workloads,
such as the machine learning operations pipeline, is
typically separated from infrastructure automation to
ensure loose coupling of the architecture.

Scaling, upgrading and destruction phases

In addition to the initial setup of the cluster, the in-
frastructure automation strategy must also include
the subsequent management of the cluster, such as
scaling and upgrading the cluster. As the workload
increases or decreases, a running cluster may reach
its capability limits or use its resources inefficiently.
Therefore, scaling the cluster is an important part
of the automation process. Cluster scaling consists
of adding and removing cluster nodes. Scaling can
be triggered either automatically based on collected
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Figure 4: Example infrastructure resulting from the automation process.

cluster metrics or manually. In larger environments
consisting of many clusters, automatic scaling enables
better overall utilization of resources. Typically, re-
source usage of different clusters vary widely, and the
ability to free up unused resources and make them
available for other clusters to consume, reduces the
required physical resources. However, auto-scaling re-
quires additional components to manage the infras-
tructure, which increases the complexity of the en-
vironment. Therefore, for smaller environments that
have more predictable resource consumption, manu-
ally triggered scaling may be sufficient.

The process of adding nodes to the cluster is sim-
ilar to the initialization of the cluster. The additional
virtual machines are created and configured first and
then the platform components are installed on them.
When the cluster nodes are ready, they are simply
joined to the existing cluster. Removing nodes, on
the other hand, is more difficult because these nodes
are already in operation and contain an active work-
load. To gracefully remove a node, the node must first
be drained, which means moving all of the workload
to other running nodes. This ensures that services
remain available after the node is removed.

In addition to cluster scaling, the cluster must be
regularly maintained to ensure that all components
are up to date. Compared to cluster scaling, up-
grades still need to be automated, but are usually
triggered manually. This is because the compatibil-
ity of newer components must be checked in advance,
otherwise the upgrade could render the entire cluster
unusable. There are many strategies for upgrading
the cluster, but in-place upgrades are most common.
With in-place strategy, every node in the cluster is
upgraded sequentially one-by-one. This is done by
draining the node, upgrading its components and re-
joining the node back to cluster. No additional vir-
tual components need to be created for this approach,
which is why it is frequently used, especially in smaller
environments.

Once the cluster reaches the end of its life, it
can be removed. To remove the cluster completely,
only the virtual components need to be stopped and
deleted. However, if the cluster contains valuable

data, the data must be safely migrated before the
cluster is destroyed, because it will be lost during this
process.

2.1 Technology stack

Figure [5] shows the most popular open source tech-
nologies commonly used for infrastructure automa-
tion. A sensible combination of such technologies can
be employed to realize an on-premises infrastructure
according to the example depicted in Figure [4]

Technologies are divided into 4 groups compris-
ing of Virtualization, Containerization, Orchestration
and Automation Tools. Virtualization technologies
represent hypervisors that are essential for traditional
virtualization on top of physical resources. They are
capable of running multiple guest operating systems
on a single physical host while isolating them from
each other. KVM and Xen are open source projects,
with KVM being the most widely used. Hyper-V and
VMWare are good examples of proprietary alterna-
tives.

The second group contains technologies for con-
tainerization. Just as traditional virtualization re-
quires a hypervisor to manage virtual resources, con-
tainer runtimes enable containerization. The most
popular container runtimes are Docker, ContainerD,
CRI-O, and RKT.

Container orchestrators can efficiently coordinate
applications packaged as containers across multiple
containerized environments. The most popular con-
tainer orchestrator is Kubernetes, which also supports
most of the container runtimes mentioned above. No-
mad and OpenShift are seen as good alternatives for
Kubernetes. Docker Swarm, on the other hand, offers
native support for orchestrating Docker environments.
However, it cannot be used with any other container
runtime.

Finally, automation tools such as Ansible, Ter-
raform, Pulumi, and Chef are used for provisioning
a set of virtual machines, deploying container run-
times, and installing various dependencies. All these
Infrastructure-as-a-Code (IaaC) tools belong to the
declarative languages, in which the desired state of
the infrastructure is described rather than precisely
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Figure 5: Infrastructure technology stack and popular automation tools.

defined with specific steps. However, typical impera-
tive languages such as Go and Python can be used to
achieve the same result. Imperative languages offer
more freedom, but the automation process may take
longer.

2.2 Semi-automated solutions for small and
medium deployments

In Table [I] we have identified open source solutions
that can be used to set up on-premise clusters. These
solutions make use of the technologies discussed above
and depicted in Figure

All solutions analyzed in Table [ Kubitect,
Libvirt-k8s-provisioner (LKP), KubeNow, MicroK8s,
and K3s, are classified as semi-automated because
they have some unique requirements that must be met
by the user. Kubitect and LKP are capable of creat-
ing virtualized resources as part of the automation
process. MicroK8s and K3s can also be used on top
of the traditional virtualization, however, they do not
provide infrastructure automation as part of the solu-
tion. Thus, without additional automation, MicroK8s
and K3s nodes must be manually configured on each
host. KubeNow differs from other solutions as it can
only be used with OpenStack, an open source private
cloud solution, for on-premises deployments.

Kubitect, KubeNow and MicroK8s clusters are
created and managed via custom command line inter-
face (CLI) tools of the corresponding solutions. K3s
and LKP clusters, on the other hand, are managed
directly via scripts, which are less intuitive to use.

All solutions use Kubernetes as an application
and service orchestrator and, with the exception of
KubeNow, primarily use ContainerD as a container
runtime environment. While KubeNow only supports
Docker, LKP can be configured to use either Docker,
CRI-O or ContainerD. However, Docker and Contain-

erD are de facto standard and should cover most users’
needs.

In terms of implementation, each solution uses a
different set of technologies to create Kubernetes clus-
ters. The Kubitect CLI tool is written in Go and fur-
ther takes advantage of Terraform and Ansible for in-
frastructure deployment and configuration. LKP uses
only Terraform and Ansible. Consequently, different
scripts must be run to create or destroy the cluster.
MicroK8s and K3s, on the other hand, do not use
Ansible or Terraform, but they also do not provide
automation of the virtualized infrastructure. Instead,
the entire solution is implemented using a single pro-
gramming language. MikroK8s is written in Python
and K3s in Go.

Besides the implementation details, the solutions
differ mainly in the supported topologies and manage-
ment features. LKP does not support cluster deploy-
ments across multiple physical hosts, which means
that it is not possible to create truly high-availability
(HA) clusters. Likewise, it does not provide any other
management functions, such as scaling and upgrad-
ing existing clusters. Kubitect and KubeNow, on the
other hand, support cluster deployment across multi-
ple hosts. However, only Kubitect is capable of cre-
ating HA clusters, as KubeNow is limited to a sin-
gle control plane node whose failure renders the en-
tire cluster unusable. MicroK8s and K3s also support
cluster deployments that span multiple hosts. How-
ever, since they do not have infrastructure automation
out of the box, this must be done manually.

Every created cluster also requires a place to store
the application’s data. While most storage solutions
are deployed on top of the Kubernetes orchestrator
and are able to consume disks attached to the host,
some solutions provide configuration of storage clus-
ters out of the box. Kubitect and LKP both pro-
vide optional setup of distributed storage cluster that
uses Rook as the storage orchestrator. Using Rook,



Table 1: Comparison of semi-automated infrastructure automation solutions for small and medium set-ups.

Projects

\

Parameters

Kubitect LKP

MicroK8s K3s

KubeNow

On-premise
traditional
virtualization

Libvirt Libvirt

OpenStack / /

Management

tool CLI tool (kubitect)

Ansible scripts

CLI tool

CLI tool (kn) (microkss)

Shell scripts

Supported
container
runtimes

ContainerD,

ContainerD CRI-O, Docker

Docker ContainerD ContainerD

Container

orchestrator Kubernetes

Kubernetes

Kubernetes Kubernetes Kubernetes

Multi-host

deployments Y N

Cluster

. Y N
scaling

Cluster
upgrades

High
availability
(HA) cluster
topology

Out of the
box storage
solution

Rook Rook

different kinds of storage types can be used, such as
filesystem, object store and block storage, which cov-
ers all requirements of Machine Learning Operations
(MLOps). MicroK8s does not provide a distributed
storage solution out of the box, neither as part of
the cluster deployment nor as an optional add-on. In
comparison, K3s offers the Longhorn deployment as
an optional add-on module that is equivalent to Rook
in terms of features. KubeNow is able to use the stor-
age provided by the underlying cloud.

3 Machine Learning Automation

The development of machine-learning models fol-
lows a well defined knowledge discovery process
(KDP) [14]. The main steps of the KDP consist of (1)
data analysis, (2) data preparation (pre-processing),
(3) model training and evaluation, and (4) model de-
ployment [I5], as also represented in Figure @ In the
past, such process and the enabling tools were familiar
only to a limited number of domain experts and the
process involved intense manual effort. However, in
recent years, coordinated efforts have been taken by
the private and public sectors to democratize Al and
model development [I6] to empower less specialized
users.

The democratization process involves a division of
labour and automation approach applied to the KDP,
as elaborated more in details in [15], where rather
than a domain expert executing step-by-step the pro-

Provider dependant /

Longhorn

cess in Figure [f] from the start to the end, the process
only needs to be controled at a few key steps. Further-
more, generic models can also be trained and made
available through an Inference as a Service (IaaS) [5]
model where the users only leverage an existing, pre-
trained model to make an inference used by their ap-
plication or service. Such automation is enabled by
MLOps [15].

As can be seen from MLOps automation process
depicted in Figure [6] in the Data Ingestion and Pu-
rification phase, data from sensors or applications can
be received in batch format such as hourly, daily or
weekly batches or in a streaming format as it is being
produced. The incoming data is then managed by fea-
ture stores rather than manually through generation
scripts and file/database storage. Feature stores are
data management services that harmonize data pro-
cessing steps in producing features for different ML
pipelines, making it more cost-effective and scalable
compared to traditional approaches [I7], and they can
also be seen and made available as a service (i.e.,

STaaS).

During model training, various combinations of
features available in the feature store are used to train
ML models. The model training phase can be made
available to ML developers as MLaaS, where they can
tune and customize desired models on desired features
[5], or they can be entirely abstracted and hidden from
less advanced users. The resulting models are stored
in a registry, evaluated and some of them eventually
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deployed as part of the Model Serving phase. The
model evaluation and deployment enable the develop-
ment of the IaaS model where less experienced users
are able to select and use pre-trained models for their
applications.

3.1 Technology stack

The choice of technologies available for realizing the
ML automation workflow depicted in Figure [f] is be-
coming richer every year. In Figure[7] we provide an
overview of possible candidates. During the data in-
gestion phase, a batch can for instance be retrieved
from a database or STaaS service (e.g., BigQuery,
Hive, Postgres) or a stream processing platform (e.g.,
Kafka, Spark, Flink).

For managing the features, fully automated solu-
tions such as feature stores (e.g., Feast, Hopsworks)
can be employed or it can also be realized using data
versioning and data processing solutions such as DVC,
Pandas, and Spark. Several closed source feature
stores have been recently developed, while to the best
of our knowledge, three feature management solutions
are available as open source with their characteristics
summarised in Table 2l It can be seen from the third
column of the table that they include connectors to
support fast interconnection with various storage so-
lutions (e.g., BigQuery, S3, Postgres, ...) and stream-
ing platforms (e.g., Kafka, Spark). As per columns
three and four, it can be seen that all open source
stores support offline and online storage such as public
cloud provider’s BigQuery, Azure, S3 and Snowflake
or open source solutions such as PostgreSQL and Cas-
sandra. As can be seen from the sixth column of the

table, the open source feature stores can be deployed
locally and also in the public cloud.

For the model development phase, the necessary
tools include tools that enable code development and
versioning (e.g., Kubeflow, Jupyter and Git), tools
that are responsible to orchestrate model training
such as Kubeflow Pipelines, Airflow and CML, as well
as tools for speeding up training through paralleliza-
tion such as Ray, Dask and Spark. Using the set of
tools in this phase, MLaaS can be realized where de-
velopers are presented with a complete playground for
custom model development.

The model serving comprises tools for model
tracking, evaluation and serving such as Kubeflow
and MLFlow. Especially these two tools are evolv-
ing rapidly with largely overlapping functionality in
the model development and service phases of MLOps.
BentoML, MLEM, TensorFlow Serving (TFX) and
Kale can also be used for serving, Neptune.ai or
“Weights € Biases” for versioning while Prometheus
for model performance monitoring.

3.2 On-premise automation use case

Figure [§] shows an example of an on-premise ML au-
tomation platform. To build a model, we first re-
quire data. A feature store (e.g., Feast) can be set
up to help dealing with live/streaming sensor data
(i.e., events) from stream processor (e.g., Kafka) and
historical data from a database(s)/file(s) (i.e., data
warehouse/lake). A registry within a feature store
contains instructions for obtaining or composing fea-
tures. The example in Listing [1} for instance, defines
mean hourly energy consumption as a feature. With
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Table 2: List of open-source feature store solutions suitable for time series data.

Open

Name Data Sources Offline Storage Online Storage Deployment
Source
. . BigQuery, Hive,
BigQuery, Hive, Kafka, Pandas, Postgres, Dyn.amoDB, Datastore, AWS Lambda,
Parquet, Postgres, . Redis, Azure Cache for
Feast Y . Redshift, Snowflake, . Kubernetes,
Redshift, Snowflake, X Redis, Postgres,
Spark, Synapse, Trino, . local
Spark, Synapse SQLite, custom
custom
. Azure Data Lake
Hopsworks Y gh?lll{(;ns p;aljxlfe; CcL)lrs tSOCIZla Storage, HopsF'S, any any SQL with JDBC, é\z)sieAéilglel;i
P annec o SQL with JDBC, Snowflake localg '
Redshift, S3, Snowflake
Butterfree Y Kafka, S3, Spark S3, Spark Metastore Cassandra local

all the instructions set and all data sources available,
the feature store manages access to the features for
model training and models deployed in production.
In addition, a feature store unifies access to features
for a development and production environment. Once
a new instruction is added to the feature store’s reg-
istry, a new feature becomes immediately available.

The model training phase depicted in Figure [6]
focuses on analyzing data and building ML models
with ML pipelines. Data analysis can lead to a dis-
covery of new features that can be valuable addition
for future models. Therefore, they are contributed to
the feature store (in previous phase) as instructions
in the registry to benefit anyone using it. Machine
learning pipelines, which define process from data to
machine learning model, are specified in code (e.g.,
Python script, Jupyter Notebook) with help from ML
frameworks. Data for pipelines are obtained prefer-
ably from a feature store or other external sources.
Developed ML models are pushed automatically or
manually to the MLFlow service (see Fig. [6]).

The ML models can be developed using several
open-source machine learning frameworks such as

10 # 1h in our case.
11 ttl=Duration(seconds=3600) ,

NumPy, SciPy, scikit-learn, XGBoost, PyTorch, Ten-
sorFlow, Keras, and JAX. In addition, these libraries
can be extended with higher-order “AutoML” frame-
works, such as AutoKeras or AutoSklearn. These
frameworks automate search for optimal ML algo-
rithms, architectures, and hyper-parameters for given
data.

Tuning ML pipeline and therefore ML. models is a
complex process that usually requires multiple itera-
tions. It should be noted that the feature importance
in MLOps pipelines is assessed by the Model Training
component depicted in Figure [6] subject to the avail-
ability of the features.

| residential_hourly_stats = FileSource(
2 path=str (residential_dataset_path),
3 event_timestamp_column=’timestamp’,

1)

¢ consumption_hourly_stats_view = FeatureView(
7 name=’residential_hourly_stats’,

8 entities=[’residential_id’],

9 # Measurement validity period.

Used when data is joined

2 # Describe features in the data
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Figure 8: Example on-premise infrastructure for AlaasS.

features=[

Feature (name=’ts’, dtype=ValueType.FLOAT)

Feature (name=’energy’, dtype=ValueType.
FLOAT),
1,
online=True,
# source of the data (parquet file in our
case)
batch_source=residential_hourly_stats,
tags={},

Listing 1: Example recipe for generating the average
household energy consumption over 1 hour feature
(energy mean).

To make the best out of an ML model development
process, we consider good practice to keep track of ML
pipeline source code with versioning tools (e.g., Git)
and have it co-located on centralized services (e.g.,
GitHub, GitLab). This way, the MLOps system (es-
pecially the orchestrator) knows where to find and
access the latest source code. With a source code
branching feature of versioning tools, we can develop
features or improvements in parallel and test them
independently before they might get merged into the
main branch.

ML pipeline steps (including the final ML algo-
rithm) can be time-consuming in many cases. It
would be inefficient to rebuild ML models with the
same data and parameters more than once. To mini-
mize this overhead, a developed model is pushed into
model store (e.g., MLFlow, KubeFlow) service for
later retrieval. The MLFlow service in our case keeps
track of ML model artifacts. The artifacts are, for in-
stance, model hyper-parameters, self-evaluation met-
rics, model’s score/grade, and model’s binary repre-

sentation (i.e., inner state, model parameters, model
weights) for later retrieval without (re)training. To
keep the pipeline source code and artifacts connected
for the record, MLFlow also preserves essential parts
of source code, and source code commit hash. Code
sample in Listing[2]shows required changes to pipeline
code to utilize MLFlow service.

# Start recording the run

with mlflow.start_run():
model.fit (X_train, y_train)

# predict values for evaluation
y_pred = model.predict(X_test)

# MLFlow will store model into pickle for
us.
mlflow.sklearn.log_model (
sk_model=model,
artifact_path=’model’,
registered_model_name=config.
REGISTERED_MODEL_NAME, # model
registration here or manually on web UI
pip_requirements=[’-r ./requirements.
txt’],
)

# Log all relevant metrics for given task
rmse = metrics.mean_squared_error (y_test,
y_pred, squared=False)

mlflow.log_metric (’RMSE’, rmse)

Listing 2: Example model development tracking with
MLFlow.

Once models are preserved in model store (i.e.,
MLFlow), we can access and inspect them through
the web or application programming interface (APT).
We can inspect individual models, their meta-data,
input parameters and evaluation metrics, and com-
pare them with other models. From a list of pro-
posed/preserved models, we can manually (via web



interface) or automatically (with software) promote or
demote models into staging (or testing) and produc-
tion grade, which would happen after selected models
undergo additional inspection and evaluation steps.
The assigned labels help test deployment and pro-
duction deployment infrastructure to pick the correct
model.

Once the deployment process is triggered, the au-
tomated pipeline takes labeled models (staging or pro-
duction), converts them into containers suitable for
the model serving framework (e.g., BentoML), and
pushes ready-made containers into blob storage (e.g.,
RedisDB, MinlO). From blob storage, models can be
quickly (re)deployed by model serving framework ser-
vice. Once deployed, MLOps pipeline exposes their
interaction interfaces to the world.

For orchestration (including automation and syn-
chronization) of the MLOps pipeline, we use Apache
Airflow. To orchestrate, Apache Airflow requires in-
structions made out of small tasks. Tasks can de-
pend on each other, but their inter-dependencies must
form a directed acyclic graph (DAG). Airflow can be
used to trigger model rebuilding, preparing staging
and production containers and (re)deploying models.

Our on-premise use case consists of many com-
plex interconnecting services. For instance, Apache
Airflow orchestrator, Feast feature store, Jupyter-
Hub, MLFlow model storage and RedisDB blob stor-
age. However, most of these services consist of many
smaller hidden building blocks. For example, MLFlow
model storage requires an MLFlow server, a Post-
greSQL database for storing models’ metadata, and
MinlO for storing models’ artifacts. To reduce the
complexity, the usual practice is to containerize indi-
vidual building blocks and present service as a single
(unsplittable) entity such as pod (in Kubernetes con-
text) or compose (in Docker context).

4 Conclusions

In this chapter, we discussed the importance of AlaaS
along with recent developments in automation that
enable on-premises AlaaS deployments, thus extend-
ing the benefits of such systems also to small and
medium size setups requiring full control over the
data and technological platform. We first focused on
the general process required for on-premise infrastruc-
ture deployment and identified a number of existing
open source tools and technologies for possible realiza-
tions. Then we discussed the general process required
for machine learning pipeline automation in view of
enabling AlaaS and also proceeded at identification
of suitable technologies for its on-premise implemen-
tation. Overall, we argued that the available open
source technologies are sufficiently mature and suit-
able for small to medium size on-premise setups of
AlaaS functionality, and can be automatically config-
ured and interconnected in such a way to support easy
and intuitive setting up, use and management, hid-
ing the complexity from the non-expert users. Such

ATaaS setups can thus support gradual introduction of
smart services also to various stakeholders and orga-
nizational entities in cities and towns of various sizes,
and enable their extension and scaling with the in-
creasing needs and introduction of new services and
applications.
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